lunes, 21 de octubre de 2013

Campo Eléctrico Y Su Representación Gráfica

Campo Eléctrico Y Su Representación Gráfica

Este esta asociado a una carga aislada o a un conjunto de cargas, es región del espacio en donde se dejan sentir sus efectos.En un punto cualquiera del espacio en donde está definido un campo eléctrico se coloca una carga de prueba o carga testigo, se observará la aparición de fuerzas eléctricas, de atracciones o de repulsiones sobre ella.


Gravitación Universal

Gravitación Universal 

En su teoría de la gravitación universal Isaac Newton (1642-1727) explicó las leyes de Kepler y, por tanto, los movimientos celestes, a partir de la existencia de una fuerza, la fuerza de la gravedad, que actuando a distancia produce una atracción entre masas. Esta fuerza de gravedad demostró que es la misma fuerza que en la superficie de la Tierra denominamos peso.
Newton demostró que la fuerza de la gravedad tiene la dirección de la recta que une los centros de los astros y el sentido corresponde a una atracción. Es una fuerza directamente proporcional al producto de las masas que interactúan e inversamente proporcional a la distancia que las separa. La constante de proporcionalidad, G, se denomina constante de gravitación universal.


Newton consiguió explicar con su fuerza de la gravedad el movimiento elíptico de los planetas. La fuerza de la gravedad sobre el planeta de masa m va dirigida al foco, donde se halla el Sol, de masa M, y puede descomponerse en dos componentes:
  • existe una componente tangencial (dirección tangente a la curva elíptica) que produce el efecto de aceleración y desaceleración de los planetas en su órbita (variación del módulo del vector velocidad);
  • la componente normal, perpendicular a la anterior, explica el cambio de dirección del vector velocidad, por tanto la trayectoria elíptica. En la figura adjunta se representa el movimiento de un planeta desde el afelio (B) al perihelio (A), es decir, la mitad de la trayectoria dónde se acelera. Se observa que existe una componente de la fuerza, la tangencial que tiene el mismo sentido que la velocidad, produciendo su variación.

En los cursos elementales de física se estudia la gravedad, a partir de la teoría de Newton, suponiendo que la estrella se halla en reposo y los planetas giran a su alrededor con movimiento circular uniforme. Se indica que en realidad la trayectoria es elíptica aunque en el sistema solar las órbitas son casi circulares. Sin embargo no se comenta, generalmente, que también se realiza otra aproximación: se supone que la masa del Sol es mucho mayor que las de los planetas, que se cumple en nuestro sistema solar. Pero si orbitan dos cuerpos masivos, o sea, dos estrellas (estrellas binarias) o una estrella y un planeta masivo, se describe mejor su movimiento tomando como referencia el centro de masas de ambos cuerpos. En este caso, estrella y planeta, orbitan alrededor del centro de masas.

Supongamos el sistema de la figura formado por una estrella de masa M* y un planeta de masa m. Consideremos, para simplificar, movimientos circulares y uniformes. Nombremos la distancia que separan el planeta del centro de masas (CM) como a y la distancia que separa la estrella del centro de masas (CM) comor*. Ambos cuerpos se mueven con velocidades lineales constantes, v el planeta y v* la estrella.

Definamos ahora el centro de masas: En general para un conjunto de n cuerpos la posición del centro de masas (XCM, YCM, ZCM) viene dado por la expresión, en coordenadas rectangulares o cartesianas (x, y, z):


Como nuestro problema se limita a movimientos en un plano (el de la órbita) y con trayectoria circular usaremos un sistema de coordenadas polares (r, q) con origen en la misma posición del centro de masas, o searCM = 0, y tomando el eje polar hacia el planeta en la posición actual. Calculemos, a partir de la figura, rCM, tendremos:  

La 1ª ley de la dinámica de Newton: indica que un sistema sobre el que no actúen fuerzas externas se moverá con movimiento rectilíneo y uniforme (o estará en reposo) respecto de un sistema inercial. Por ello el sistema estrella-planeta debe cumplir esta ley ya que las fuerzas que actúan son internas (la gravedad). Y será el centro de masas del sistema que deberá moverse con movimiento rectilíneo y uniforme.

Las velocidades angulares de ambos cuerpos respecto del centro de masas deben ser iguales (ver animación) para que se conserve su posición relativa, de donde deducimos que también serán iguales los periodos (T* periodo de la estrella y T periodo del planeta):





Formas de cargar un cuerpo

Formas de cargar un cuerpo

Cuando a un cuerpo se le dota de propiedades eléctricas, es decir, adquiere cargas eléctricas, se dice que ha sido electrizado. 

La electrización es uno de los fenómenos que estudia la electrostática.

Para explicar como se origina la electricidad estática, hemos de considerar que la materia está hecha de átomos, y los átomos de partículas cargadas, un núcleo rodeado de una nube de electrones. Normalmente, la materia es neutra (no electrizada), tiene el mismo número des cargas positivas y negativas. 

Algunos átomos tienen más facilidad para perder sus electrones que otros. Si un material tiende a perder algunos de sus electrones cuando entra en contacto con otro, se dice que es más positivo en la serie Triboeléctrica. Si un material tiende a capturar electrones cuando entra en contacto con otro material, dicho material es más negativo en la serie triboeléctrica.

Hay varias formas de electrizar un cuerpo, las principales son:


Frotamiento

Al frotar dos cuerpos uno con el otro, ambos se electrizan uno positiva y el otro negativamente, las cargas no se crean ni se destruyen, sino que solamente se trasladan de un cuerpo a otro o de un lugar a otro en el interior de un cuerpo dado.
El elemento mal conductor es el que adquiere carga positiva. Los elementos buenos conductores reciben con facilidad los electrones, por ello se cargan negativamente.

Creamos electricidad estática, cuando frotamos una lapicera con nuestra ropa y comprobamos la capacidad que tiene de atraer pequeños trozos de papel. Lo mismo suceder cuando frotamos vidrio con seda o ámbar con lana.





Contacto

La electrización por contacto es considerada como la consecuencia de un flujo de cargas negativas de un cuerpo a otro. Si el cuerpo cargado es positivo es porque sus correspondientes átomos poseen un defecto de electrones, que se verá en parte compensado por la aportación del cuerpo neutro cuando ambos entran en contacto, El resultado final es que el cuerpo cargado se hace menos positivo y el neutro adquiere carga eléctrica positiva. Aun cuando en realidad se hayan transferido electrones del cuerpo neutro al cargado positivamente, todo sucede como si el segundo hubiese cedido parte de su carga positiva al primero. En el caso de que el cuerpo cargado inicialmente sea negativo, la transferencia de carga negativa de uno a otro corresponde, en este caso, a una cesión de electrones.


Inducción

La electrización por influencia o inducción es un efecto de las fuerzas eléctricas. Debido a que éstas se ejercen a distancia, un cuerpo cargado positivamente en las proximidades de otro neutro atraerá hacia sí a las cargas negativas, con lo que la región próxima queda cargada negativamente. Si el cuerpo cargado es negativo entonces el efecto de repulsión sobre los electrones atómicos convertirá esa zona en positiva. En ambos casos, la separación de cargas inducida por las fuerzas eléctricas es transitoria y desaparece cuando el agente responsable se aleja suficientemente del cuerpo neutro.



Conductores:

Cualquier material que ofrezca poca resistencia al flujo de electricidad. Un buen conductor de electricidad, como la plata o el cobre, puede tener una conductividad mil millones de veces superior a la de un buen aislante, como el vidrio o la mica. El fenómeno conocido como superconductividad se produce cuando al enfriar ciertas sustancias a un temperatura cercana al cero absoluto su conductividad se vuelve prácticamente infinita. En los conductores sólidos la corriente eléctrica es transportada por el movimiento de los electrones; y en disoluciones y gases, lo hace por los iones.

En los conductores sólidos la corriente eléctrica es transportada por el movimiento de los electrones; y en disoluciones y gases, lo hace por los iones.

Conductores sólidos: Metales

Características físicas: 


  • Estado sólido a temperatura normal, excepto el mercurio que es líquido. 
  • Opacidad, excepto en capas muy finas.
  • Buenos conductores eléctricos y térmicos.
  • Brillantes, una vez pulidos, y estructura cristalina en estado sólido.
  • Dureza o resistencia a ser rayados.
  • Resistencia longitudinal o resistencia a la rotura.
  • Elasticidad o capacidad de volver a su forma original después de sufrir deformación.
  • Maleabilidad o posibilidad de cambiar de forma por la acción del martillo (puede batirse o extenderse en planchas o laminas).
  • Resistencia a la fatiga o capacidad de soportar una fuerza o presión continuadas.
  • Ductilidad: permite su deformación forzada, en hilos, sin que se rompa o astille.


Características químicas:


  • Valencias positivas: Tienden a ceder electrones a los átomos con los que se enlazan.
  • Tienden a formar óxidos básicos.
  • Energía de ionización baja: reaccionan con facilidad perdiendo electrones para formar iones positivos o cationes


Características eléctricas:


  • Mucha resistencia al flujo de electricidad.
  • Todo átomo de metal tiene únicamente un número limitado de electrones de valencia con los que unirse a los átomos vecinos.
  • Superposición de orbitales atómicos de energía equivalente con los átomos adyacentes
  • La elevada conductividad eléctrica y térmica de los metales se explica así por el paso de electrones a estas bandas con defecto de electrones, provocado por la absorción de energía térmica.


Ejemplos de metales conductores: Cobre. Este material es un excelente conductor de las señales eléctricas y soporta los problemas de corrosión causados por la exposición a la intemperie, por eso se usa para los cables. También el aluminio es un buen conductor. La más baja conductividad eléctrica la tiene el bismuto, y la más alta (a temperatura ordinaria) la plata.

Conductores líquidos: El agua, con sales como cloruros, sulfuros y carbonatos que actúan como agentes reductores (donantes de electrones), conduce la electricidad. Algunos otros líquidos pueden tener falta o exceso de electrones que se desplacen en el medio. Son iones, que pueden ser cationes, (+) o aniones (-).

Conductores gaseosos:


  • Valencias negativas (se ioniza negativamente)
  • En los gases la condición que implica el paso de una corriente se conoce como el fenómeno de descarga o "ruptura" eléctrica del gas: paso de un comportamiento no conductor (baja corriente) a conductor.
  • Tienden a adquirir electrones
  • Tienden a formar óxidos ácidos.


Ejemplos: Nitrógeno, cloro, Neón (ionizados)


Semiconductores:

Son los materiales sólidos o líquidos capaces de conducir la electricidad mejor que un aislante, pero peor que un metal. La conductividad eléctrica, que es la capacidad de conducir la corriente eléctrica cuando se aplica una diferencia de potencial, es una de las propiedades físicas más importantes. Ciertos metales, como el cobre, la plata y el aluminio son excelentes conductores. Por otro lado, ciertos aislantes como el diamante o el vidrio son muy malos conductores. A temperaturas muy bajas, los semiconductores puros se comportan como aislantes. Sometidos a altas temperaturas, mezclados con impurezas o en presencia de luz, la conductividad de los semiconductores puede aumentar de forma espectacular y llegar a alcanzar niveles cercanos a los de los metales. Las propiedades de los semiconductores se estudian en la física del estado sólido.
Semiconductores:

Entre los semiconductores comunes se encuentran elementos químicos y compuestos, como el silicio, el germanio, el selenio, el arseniuro de galio, el seleniuro de cinc y el telururo de plomo.

Para incrementar el nivel de la conductividad se provocan cambios de temperatura, de la luz o se integran impurezas en su estructura molecular.

Estos cambios originan un aumento del numero de electrones liberados (o bien huecos) conductores que transportan la energía eléctrica.

Los cuatro electrones de valencia (o electrones exteriores) de un átomo están en parejas y son compartidos por otros átomos para formar un enlace covalente que mantiene al cristal unido.

Para producir electrones de conducción, se utiliza energía adicional en forma de luz o de calor (se maneja como temperatura), que excita los electrones de valencia y provoca su liberación de los enlaces, de manera que pueden transportar su propia energía.

Cada electrón de valencia que se desprende de su enlace covalente deja detrás de sí un hueco, o dicho en otra forma, deja a su átomo padre con un electrón de menos, lo que significa entonces que en ese átomo existirá un protón de más.

Las deficiencias o huecos que quedan contribuyen al flujo de la electricidad (se dice que estos huecos transportan carga positiva). Éste es el origen físico del incremento de la conductividad eléctrica de los semiconductores a causa de la temperatura.

Los cristales semiconductores de dividen en intrínsecos y extrínsecos. Un cristal intrínseco es aquél que se encuentra puro (aunque no existe prácticamente un cristal 100% puro); es decir, no contiene impurezas; mientras que un cristal extrínseco es aquél que ha sido impurificado con átomos de otra sustancia. Al proceso de impurificación se le llama también dopado, y se utiliza para obtener electrones libres que sean capaces de transportar la energía eléctrica a otros puntos del cristal.

Los materiales extrínsecos se dividen en “tipo n” y “tipo p”.

La diferencia del número de electrones entre el material dopante (tanto si acepta como si confiere electrones) y el material receptor hace que crezca el número de electrones de conducción negativos o positivos.

Si aumenta el número de electrones de conducción negativos, entonces el material es tipo n; y si aumenta el numero de cargas positivas (lagunas), es un material tipo p.

Ejemplos:

Cada átomo de silicio tiene cuatro electrones de valencia. Se requieren dos para formar el enlace covalente. En el silicio tipo n, un átomo como el del fósforo (P), con cinco electrones de valencia, reemplaza al silicio y proporciona electrones adicionales. En el silicio tipo p, los átomos de tres electrones de valencia como el aluminio (Al) provocan una deficiencia de electrones o huecos que se comportan como electrones positivos. Los electrones o los huecos pueden conducir la electricidad.

Cuando ciertas capas de semiconductores tipo p y tipo n son adyacentes, forman un diodo de semiconductor, y la región de contacto se llama unión pn. Un diodo es un dispositivo de dos terminales que tiene una gran resistencia al paso de la corriente eléctrica en una dirección y una baja resistencia en la otra.

Las propiedades de conductividad de la unión pn dependen de la dirección del voltaje, que puede a su vez utilizarse para controlar la naturaleza eléctrica del dispositivo

Algunas series de estas uniones se usan para hacer transistores y otros dispositivos semiconductores como células solares, láseres de unión pn y rectificadores.

Los dispositivos semiconductores tienen muchas aplicaciones en la ingeniería eléctrica. Los últimos avances de la ingeniería han producido pequeños chips semiconductores que contienen cientos de miles de transistores. Estos chips han hecho posible un enorme grado de miniaturización en los dispositivos electrónicos.

Aislantes:

Son materiales en los que las cargas se mueven con mucha dificultad y ofrecen una elevada resistencia al paso de la electricidad. Materiales: lana de madera, fibra de vidrio, yeso, caucho, lucita, ebonita, porcelana y algunos polímeros.

Presentan una resistencia al paso de corriente eléctrica hasta 2,5 × 1024 veces mayor que la de los buenos conductores eléctricos como la plata o el cobre.


Aislantes sólidos:

En los sistemas de aislación de transformadores destacan las cintas sintéticas PET (tereftalato de polietileno), PEN (naftalato de polietileno) y PPS (sulfido de polifenileno) que se utilizan para envolver los conductores magnéticos de los bobinados. Tienen excelentes propiedades dieléctricas y buena adherencia sobre los alambres magnéticos.

Un buen aislante entre vueltas de las bobinas de transformadores es el cartón prensado o pressboard, el cual da forma a estructuras de aislación rígidas.

Aislantes líquidos:

Las propiedades físicas de los dieléctricos líquidos como por ejemplo: peso específico, conductibilidad térmica, calor específico, constante dieléctrica, viscosidad, dependen de su naturaleza, es decir de la composición química, pero su rigidez dieléctrica, además está ligada a factores externos como por ejemplo: impureza en suspensión, en solución, humedad, etc., que, generalmente, reducen su valor, degradando la característica importante.

Los fluidos o líquidos dieléctricos cumplen la doble función de aislar los bobinados en los transformadores y disipar el calor al interior de estos equipos.

El líquido dieléctrico más empleado es el aceite mineral. El problema es que es altamente inflamable.

Fluídos dieléctricos sintéticos, (hidrocarburos) con alto punto de inflamación.

El líquido aislante sintético más utilizado desde principios de la década de 1930 hasta fines de los 70's fue el Ascarel o PCB, que dejo de usarse por ser muy contaminante.

Entre los nuevos líquidos sintéticos destacan las siliconas y los poly-alfa-olefines. Tienen un alto costo, eso dificulta su masificación.

Aislantes gaseosos:

Los gases aislantes más utilizados en los transformadores son el aire y el nitrógeno, este último a presiones de 1 atmósfera. Estos transformadores son generalmente de construcción sellada. El aire y otros gases tienen elevadísima resistividad y están prácticamente exentos de pérdidas dieléctricas.


El SF6 (hexafluoruro de azufre) es otro gas aislante que se caracteriza por ser incoloro, inodoro, no toxico, química y fisiológicamente inerte, no corrosivo no inflamable y no contaminante. Por sus características dieléctricas es ideal como medio aislante, tiene una rigidez dieléctrica muy elevada, tanto a la frecuencia industrial como a impulso, gracias a su peculiar característica de gas electronegativo. Con la captura de los electrones libres la molécula de SF6 se transforma en iones negativos pesados, y por lo tanto poco móviles. La rigidez dieléctrica del SF6 a la frecuencia industrial es por lo menos dos veces y media la del aire a la presión de 5 kg/cm2, condición que permite lograr un dado nivel de aislamiento con presiones relativamente bajas, lo cual implica sistemas de contención simples y de completa confiabilidad. Este gas tiene menor capacidad de disipación de calor que el aceite mineral, situación que se puede mejorar aumentando la presión del SF6 en el tanque del transformador.

miércoles, 16 de octubre de 2013

Estructura de la Materia


Estructura de la materia


La materia consiste de partículas extremadamente pequeñas agrupadas juntas para formar el átomo. Hay una  90 ocurrencias naturales de estas agrupaciones de partículas llamadas elementos. Estos elementos fueron agrupados en la tabla periódica de los elementos en secuencia de acuerdo a sus números atómicos y peso atómico. Hay además 23 elementos hechos por el hombre que no ocurren en la naturaleza, por lo que al final son unos 113 elementos conocidos hasta la fecha. Estos elementos no pueden cambiarse por procesos químicos. Ellos solo pueden ser cambiados por reacción nuclear o atómica, sin embargo pueden ser combinados para producir el incontable número de compuestos con los que tropezamos día a día.
Estructura de átomo

Un átomo puede ser representado simbólicamente en un modelo que recrea nuestro sistema solar, el cual tiene en el centro el sol y los planetas girando en órbitas alrededor de él. Este modelo atómico, representado en la figura 1 fue propuesto por el físico Danés, Niels Bohr en 1913. Los mecanismos cuánticos actuales han demostrado que este modelo no es exactamente correcto, pero sigue siendo útil para la visualización de átomo.

El centro del átomo se llama núcleo y está principalmente formado por las partículas llamadas Protones y Neutrones, los que constituyen la mayoría de la masa del átomo. Orbitando alrededor del los núcleos están pequeñas partículas llamadas electrones. Estos electrones tienen una masa muchas veces mas pequeña que el Protón y el Neutrón. Hay otras partículas sub-atómicas estudiadas por los físicos atómicos, pero estas tres son suficientes para nuestro propósito.

Figura 1

Todos los elementos de la tabla periódica están formados por las tres partículas con la sola excepción del Hidrógeno que tiene un núcleo formado por un protón simple, alrededor del cual gira orbitando un electrón. El protón y el neutrón tienen una masa de alrededor de 1840 veces la masa del electrón.
Número y peso atómicos

Los elementos se identifican por su número y masa atómicos. Normalmente, un átomo tiene igual número de protones en su núcleo que de electrones girando alrededor de él. El número de protones del núcleo constituye el número atómico del elemento. De manera simplificada la masa atómica de un elemento es numéricamente igual al total de partículas mayores (protones y neutrones) en el núcleo.
Uno de los primeros elementos estudiados por los científicos fue el oxígeno. Después de la investigación, en el núcleo del oxígeno se encontraron 8 protones y 8 neutrones, por lo que le fueron asignados 16 como peso atómico y 8 como número atómico. 



Figura 2


Como se muestra en la figura 2 los electrones que giran alrededor del núcleo los hacen agrupados en anillos u órbitas. Esas órbitas se tratan como niveles de energía los que a su vez contienen además sub-niveles. Cada nivel y sub-nivel de energía dependiendo de la distancia al núcleo contiene un cierto número máximo de electrones que no puede excederse. El primer nivel puede tener 2 electrones, el segundo 8 (2 en el primer sub-nivel y 6 en el segundo), el tercero puede contener 18 (2, 6, 10), el cuarto puede contener 32 (2, 6, 10, 14), etc.

Figura 3
El último nivel de energía de un átomo se llama nivel de valencia y puede estar lleno con el número máximo de electrones permitidos o tener electrones en defecto.

Como este último nivel de energía está incompleto puede aceptar o ceder alguno de los electrones a otro átomo de otro elemento que cumpla la misma condición y así formar uniones de átomos diferentes que comparten uno o mas electrones. Este enlace de átomos constituye la base de la comprensión de las reacciones químicas para formar sustancias complejas a partir de elementos simples. Cuando el último nivel está completo el átomo no puede compartir electrones siendo una sustancia muy estable y que no forma compuestos con otros elementos en condiciones normales, estas sustancias son los llamados gases nobles, Helio Argón Xenón etc.


La figura 3 representa el elemento aluminio, en el gráfico puede observarse que tiene tres electrones en el último nivel, estos electrones pueden ser compartidos con otro elemento por lo que la valencia del aluminio es 3.
Carga eléctrica

Los protones y electrones ejercen fuerzas mutuas entre ellos, mas o menos como si existiera una fuerza gravitacional entre ellos, por lo que se ha supuesto que las masas de estas partículas son portadoras de cierta carga eléctrica y que la fuerza de interacción entre ellas es entonces una fuerza eléctrica.

En la práctica estas fuerza eléctricas son de atracción entre partículas de naturaleza diferente (protones y electrones) y de repulsión entre las partículas de la misma naturaleza al igual que los polos de un imán, esto hace pensar en cargas de diferente naturaleza las que han sido convencionalmente denominadas positiva (+) para el protón y negativa (-) para el electrón.

Se ha demostrado además que la magnitud de las cargas de las partículas con independencia de la enorme diferencia de masa son iguales, por lo que el átomo normal (misma cantidad de protones y electrones) es una entidad neutra eléctricamente hablando. Esta carga de las partículas elementales es la menor cantidad de carga eléctrica que puede existir por lo que se ha convenido en denominar carga elemental. 

Carga Eléctrica



Carga eléctrica.
Los átomos están constituidos por un núcleo y una corteza(órbitas) En el núcleo se encuentran muy firmemente unidos los protones y los neutrones. Los protones tienen carga positiva y los neutrones no tienen carga. Alrededor del núcleo se encuentran las órbitas donde se encuentran girando sobre ellas los electrones. Los electrones tienen carga negativa.

Ambas cargas la de los protones(positiva) y la de los electrones(negativa) son iguales, aunque de signo contrario.

La carga eléctrica elemental es la del electrón. El electrón es la partícula elemental que lleva la menor carga eléctrica negativa que se puede aislar. Como la carga de un electrón resulta extremadamente pequeña se toma en el S.I.(Sistema Internacional) para la unidad de Carga eléctrica el Culombio que equivale a 6,24 10E18 electrones.

Para denominar la carga se utiliza la letra Q y para su unidad la C.
Ejemplo: Q = 5 C

En la tabla adjunta se muestra la masa y la carga de las partículas elementales.



Para el estudio de la electricidad nos basta con este modelo aproximado del átomo, con sus partículas elementales(electrón, protón y neutrón). Los protones son de carga eléctrica positiva y se repelen entre sí. Los electrones son de carga eléctrica negativa y se repelen entre sí. Los neutrones no tienen carga eléctrica.

Entre los electrones y los protones se ejercen fuerzas de atracción. Puesto que los electrones giran a gran velocidad alrededor del núcleo existe también una fuerza centrípeta que tiende a alejar del núcleo a los electrones. Entre dichas fuerzas se establece un equilibrio, de tal manera que los electrones giran en las órbitas y no son atraídos por los protones del núcleo y tampoco se salen de sus órbitas.


Electrostática

La Electrostática es la parte del electromagnetismo que estudia la interacción entre cargas eléctricas en reposo.
Por estar cargadas y a una cierta distancia, las partículas ejercen fuerzas eléctricas unas sobre otras. De acuerdo con la segunda Ley de Newton, el resultado de estas fuerzas debe ser un movimiento acelerado de las diferentes cargas. Supondremos que esto no ocurre porque actúan sobre ellas otras fuerzas no consideradas que retienen a las cargas en la misma posición.
A pesar de su aparente irrealidad (ya que una carga no puede mantenerse inmóvil flotando en el espacio), la electrostática posee una gran aplicación ya que no solo describe aproximadamente situaciones reales, sino porque sirve de fundamento para otras situaciones electromagnéticas. En el campo de la electrostática aparecen el principio de superposición, la ley de Gauss, el potencial eléctrico, la ecuación de Laplace… todos los cuales se utilizan más adelante.
La electrostática se subdivide en dos situaciones:
Electrostática en el vacío
Supone que las cargas están inmóviles flotando en el espacio.
Electrostática en medios materiales
Supone que las cargas se encuentran en el interior o en la superficie de medios materiales. A su vez, éstos se suelen clasificar en dos tipos:
Conductores
Son aquellos materiales (típicamente metálicos) que permiten el movimiento de cargas por su interior. En electrostática esto implica que las cargas se encuentran en equilibrio ya que pudiendo moverse no lo hacen.
Dieléctricos
Son aquellos materiales (típicamente plásticos) que no permiten el movimiento de cargas por su interior. En electrostática esto implica la existencia de cargas ligadas, que no pueden abandonar los átomos a los que pertenecen.
Aunque en la mayoría de los casos prácticos consideraremos cargas dentro de medios materiales, la electrostática en el vacío es válida como fundamento de todo lo que sigue, puesto que estos son vacío en su mayor parte.

Benjamin Franklin

Benjamin Franklin

(Boston, 1706 - Filadelfia, 1790) Político, científico e inventor estadounidense. Decimoquinto hermano de un total de diecisiete, Benjamin Franklin cursó únicamente estudios elementales, y éstos sólo hasta la edad de diez años. A los doce comenzó a trabajar como impresor en una empresa propiedad de uno de sus hermanos. Más tarde fundó el periódico La Gaceta de Pensilvania, que publicó entre los años 1728 y 1748. Publicó además el Almanaque del pobre Richard (1732-1757) y fue responsable de la emisión de papel moneda en las colonias británicas de América (1727).

El interés de Benjamin Franklin por los temas científicos comenzó a mediados de siglo y coincidió con el inicio de su actividad política, que se centró en diversos viajes a Londres, entre 1757 y 1775, con la misión de defender los intereses de Pensilvania. Participó de forma muy activa en el proceso que conduciría finalmente a la independencia de las colonias británicas de América, intervino en la redacción de la Declaración de Independencia (1776) junto a Jefferson y J. Adams, y se desplazó a Francia en busca de ayuda para proseguir la campaña contra las tropas británicas.

Finalizada la guerra, Benjamin Franklin fue partícipe en las conversaciones para concluir el tratado de paz que pondría fin al conflicto y contribuyó a la redacción de la Constitución estadounidense.
Por lo que respecta a su actividad científica, durante su estancia en Francia, en 1752, llevó a cabo el famoso experimento de la cometa que le permitió demostrar que las nubes están cargadas de electricidad y que, por lo tanto, los rayos son esencialmente descargas de tipo eléctrico.
Para la realización del experimento, no exento de riesgo, utilizó una cometa dotada de un alambre metálico unido a un hilo de seda que, de acuerdo con su suposición, debía cargarse con la electricidad captada por el alambre. Durante la tormenta, acercó la mano a una llave que pendía del hilo de seda, y observó que, lo mismo que en los experimentos con botellas de Leyden que había realizado con anterioridad, saltaban chispas, lo cual demostraba la presencia de electricidad.

Este descubrimiento le permitió inventar el pararrayos, cuya eficacia dio lugar a que ya en 1782, en la ciudad de Filadelfia, se hubiesen instalado 400 de estos ingenios. Sus trabajos acerca de la electricidad le llevaron a formular conceptos tales como el de la electricidad negativa y positiva, a partir de la observación del comportamiento de las varillas de ámbar, o el de conductor eléctrico, entre otros.

Además, expuso una teoría acerca de la electricidad en la que consideraba que ésta era un fluido sutil que podía presentar un exceso o un defecto, descubrió el poder de las puntas metálicas al observar que un cuerpo con carga eléctrica se descarga mucho más deprisa si termina en punta, y enunció el principio de conservación de la carga eléctrica.

Inventó también el llamado horno de Franklin y las denominadas lentes bifocales. La gran curiosidad que sentía por los fenómenos naturales le indujo a estudiar, entre otros, el curso de las tormentas que se forman en el continente americano, y fue el primero en analizar la corriente cálida que discurre por el Atlántico norte y que en la actualidad se conoce con el nombre de corriente del Golfo.

Su temperamento activo y polifacético impulsó también a Benjamin Franklin a participar en las cuestiones de ámbito local, por ejemplo, en la creación de instituciones como el cuerpo de bomberos de Filadelfia, la biblioteca pública y la Universidad de Pensilvania, así como la Sociedad Filosófica Americana. Fue el único americano de la época colonial británica que alcanzó fama y notoriedad en la Europa de su tiempo.

Tales de Mileto

Tales de Mileto

(Mileto, actual Turquía, 624 a.C.-?, 548 a.C.) Filosófo y matemático griego. En su juventud viajó a Egipto, donde aprendió geometría de los sacerdotes de Menfis, y astronomía, que posteriormente enseñaría con el nombre de astrosofía. Dirigió en Mileto una escuela de náutica, construyó un canal para desviar las aguas del Halis y dio acertados consejos políticos. Fue maestro de Pitágoras y Anaxímenes, y contemporáneo de Anaximandro.

Fue el primer filósofo griego que intentó dar una explicación física del Universo, que para él era un espacio racional pese a su aparente desorden. Sin embargo, no buscó un Creador en dicha racionalidad, pues para él todo nacía del agua, la cual era el elemento básico del que estaban hechas todas las cosas, pues se constituye en vapor, que es aire, nubes y éter; del agua se forman los cuerpos sólidos al condensarse, y la Tierra flota en ella. Tales se planteó la siguiente cuestión: si una sustancia puede transformarse en otra, como un trozo de mineral azulado lo hace en cobre rojo, ¿cuál es la naturaleza de la sustancia, piedra, cobre, ambas? ¿Cualquier sustancia puede transformarse en otra de forma que finalmente todas las sustancias sean aspectos diversos de una misma materia? Tales consideraba que esta última cuestión sería afirmativa, puesto que de ser así podría introducirse en el Universo un orden básico; quedaba determinar cuál era entonces esa materia o elemento básico.

Finalmente pensó que era el agua, pues es la que se encuentra en mayor cantidad, rodea la Tierra, impregna la atmósfera en forma de vapor, corre a través de los continentes y la vida no es posible sin ella. La Tierra, para él, era un disco plano cubierto por la semiesfera celeste flotando en un océano infinito. Esta tesis sobre la existencia de un elemento del cual estaban formadas todas las sustancias cobró gran aceptación entre filósofos posteriores, a pesar de que no todos ellos aceptaron que el agua fuera tal elemento. Lo importante de su tesis es la consideración de que todo ser proviene de un principio originario, sea el agua, sea cualquier otro. El hecho de buscarlo de una forma científica es lo que le hace ser considerado como el "padre de la filosofía".

En geometría, y en base a los conocimientos adquiridos en Egipto, elaboró un conjunto de teoremas generales y de razonamientos deductivos a partir de estos. Todo ello fue recopilado posteriormente por Euclides en su obra Elementos, pero se debe a Tales el mérito de haber introducido en Grecia el interés por los estudios geométricos.

Ninguno de sus escritos ha llegado hasta nuestros días; a pesar de ello, son muy numerosas las aportaciones que a lo largo de la historia, desde Herodoto, Jenófanes o Aristóteles, se le han atribuido.

Aristóteles consideró a Tales como el primero en sugerir un único sustrato formativo de la materia; además, en su intención de explicar la naturaleza por medio de la simplificación de los fenómenos observables y la búsqueda de causas en el mismo entorno natural, Tales fue uno de los primeros en trascender el tradicional enfoque mitológico que había caracterizado la filosofía griega de siglos anteriores.

William Gilbert



William Gilbert

(Colchester, Inglaterra, 1544 - Londres, 1603) Físico y médico inglés. Fue uno de los pioneros en el estudio experimental de los fenómenos magnéticos. Estudió medicina en la Universidad de Cambridge, viajó por Europa durante algunos años y en 1573 regresó definitivamente a Inglaterra, en cuya capital ejerció la medicina.

Pronto consiguió amplia fama como médico y como científico: en 1589 era uno de los comisarios encargados de la dirección de la Pharmacopeia Londinensis, obra que no vio la luz hasta 1618. En 1601 fue nombrado médico de la corte; a la muerte de la reina Isabel (marzo de 1603), su sucesor Jacobo I Estuardo le confirmó en el cargo. Ese mismo año fue nombrado miembro del Real Colegio de Médicos, pero Gilbert murió poco después. Fue sepultado en Colchester, donde se le erigió un monumento sepulcral.

Para la posteridad ha quedado sobre todo como un notable astrónomo y físico: fue uno de los primeros que aceptó en Inglaterra la teoría copernicana. Es notable su obra De mundo nostro sublunari philosophia nova, publicada después de su muerte por su hermano (Amsterdam, 1615). En ella, además de defender con vehemencia el sistema copernicano, aventuró como hipótesis que las estrellas fijas pueden encontrarse a diferentes distancias de la tierra, y no en una única esfera.
Pero su fama se apoya especialmente en sus estudios sobre el magnetismo contenidos en El imán y los cuerpos magnéticos (De magnete magneticisque corporibus). Esta obra, que Galileo calificó de fundamental, fue publicada en Londres en 1600 y debe considerarse como el primer tratado importante de física aparecido en Inglaterra. Gilbert compiló en ella sus investigaciones sobre cuerpos magnéticos y atracciones eléctricas.

Gilbert distingue netamente los fenómenos eléctricos de los magnéticos, refiriendo los resultados de algunas de sus experiencias dirigidas a demostrar que el hierro, al ser frotado por cuerpos electrizados como el diamante, no presenta fenómenos magnéticos. Con este propósito introdujo el autor nuevos términos que serían después usados corrientemente en la física ("polos magnéticos", "fuerza eléctrica", "cuerpos eléctricos y no eléctricos"). Al mostrar que el hierro, a altas temperaturas, no presenta alteraciones magnéticas, se adelantó a los modernos descubrimientos de Curie.

Gilbert descubrió además que la aguja de la brújula apunta al norte-sur y gira hacia abajo debido a que el planeta Tierra actúa como un gigantesco imán; hay que entender la atracción sólo como un caso particular de la atracción magnética entre polos opuestos. Construyó, con fines experimentales, un pequeño globo magnético llamada Terrella que mostraba la orientación de la aguja magnética de las brújulas en la dirección de los polos y explicaba la variación de la declinación en función de la posición de la brújula.

Charles Coulomb

Charles Coulomb

(Angulema, Francia, 1736-París, 1806) Físico francés. Su delebridad se basa sobre todo en que enunció la ley física que lleva su nombre (ley de Coulomb), que establece que la fuerza existente entre dos cargas eléctricas es proporcional al producto de las cargas eléctricas e inversamente proporcional al cuadrado de la distancia que las separa. Las fuerzas de Coulomb son unas de las más importantes que intervienen en las reacciones atómicas.

Después de pasar nueve años en las Indias Occidentales como ingeniero militar, regresó a Francia con la salud maltrecha. Tras el estallido de la Revolución Francesa, se retiró a su pequeña propiedad en la localidad de Blois, donde se consagró a la investigación científica. En 1802 fue nombrado inspector de la enseñanza pública.
Influido por los trabajos del inglés Joseph Priestley (ley de Priestley) sobre la repulsión entre cargas eléctricas del mismo signo, desarrolló un aparato de medición de las fuerzas eléctricas involucradas en la ley de Priestley, y publicó sus resultados entre 1785 y 1789. Estableció que las fuerzas generadas entre polos magnéticos iguales u opuestos son inversamente proporcionales al cuadrado de la distancia entre ellos, lo cual sirvió de base para que, posteriormente, Simon-Denis Poisson elaborara la teoría matemática que explica las fuerzas de tipo magnético.

También realizó investigaciones sobre las fuerzas de rozamiento, y sobre molinos de viento, así como también acerca de la elasticidad de los metales y las fibras de seda. La unidad de carga eléctrica del Sistema Internacional lleva el nombre de culombio (simbolizado C) en su honor.

martes, 15 de octubre de 2013

Interacciones Eléctricas, Ley de Coulomb e Interacciones Grabitacionales

Interacciones El eléctricas
La Ley de Coulomb


La Electrostática se ocupa del estudio de las interacciones entre cargas eléctricas en reposo.

Las primeras experiencias relativas a los fenómenos eléctricos se refieren a la observación de que cuando ciertos materiales se frotan unos contra otros, adquieren la propiedad de atraer otros objetos (electrización por frotamiento). Se dice que dichos cuerpos han adquirido una nueva propiedad, denominada electricidad, en virtud de la cual pueden ejercer un nuevo tipo de fuerzas: las interacciones o fuerzas eléctricas. También se suele de decir que dichos cuerpos han adquirido carga eléctrica o se han cargado electricamente.

Experimentos simples permiten deducir las siguientes propiedades relativas a las interacciones eléctricas:


  • Las interacciones eléctricas son mucho mas intensas que las interacciones gravitatorias
  • Existen dos clases distintas de electricidad: electricidad positiva y electricidad negativa
  • Las interacciones eléctricas pueden ser atractivas o repulsivas: dos cuerpos en el mismo estado de electrización se repelen y dos cuerpos en estados de electrización distintos se atraen.


Carga Eléctrica

Propiedades

Se define la carga eléctrica como la propiedad de la materia en virtud de la cual es capaz de ejercer fuerzas de tipo eléctrico. Se designa habitualmente por la letra q.

La carga eléctrica constituye una medida de la intensidad de las fuerzas electricas que un cuerpo es capaz de ejercer. También se suele decir que la carga electrica constituye una medida de la cantidad de electricidad de un cuerpo.

Propiedades:

  •  las cargas eléctricas pueden ser positivas o negativas. Cargas del mismo signo se repelen y cargas de signo contrario se atraen. La carga eléctrica neta de un cuerpo es la suma algebraica de sus cargas positivas y negativas; un cuerpo que tiene cantidades iguales de electricidad positiva y negativa (carga neta cero) se dice que es eléctricamente neutro.
  • Principio de conservación de la carga: en todos los procesos que ocurren en un sistema aislado, la carga total permanece constante.
  • Cuantización de la carga: la carga eléctrica no aparece en cualquier cantidad, sino en múltiplos enteros de una unidad fundamental o cuanto. La unidad fundamental de carga es la carga eléctrica del electrón.
Estructura atómica: las propiedades eléctricas de los cuerpos se pueden entender de forma simple teniendo en cuenta la estructura eléctrica de los átomos que constituyen la materia. Todo proceso de transferencia de carga se puede entender como un proceso de transferencia de electrones entre los átomos de dos cuerpos.

Cuando se transfieren electrones por frotamiento, decimos que los cuerpos se cargan por frotamiento (electrización por frotamiento), mientras que cuando los electrones se transfieren por contacto directo, decimos que los objetos se cargan por contacto (electrización por contacto).

Conductores y Aislantes

 De acuerdo a su comportamiento eléctrico, se pueden distinguir dos tipos de materiales:

  • Conductores: son materiales que permiten el paso de electricidad (cargas) a través de ellos. Se caracterizan porque contienen cargas que pueden moverse libremente en el material (cargas libres). El ejemplo mas común es el de los metales, en los que las cargas libres son los electrones de las capas mas externas de los átomos metálicos (electrones de valencia), también llamados electrones libres.
  • Aislantes: se trata de materiales no conductores, que no permiten el paso de la electricidad (cargas) a través de ellos. En un material aislante, las partículas cargadas (electrones y protones) que constituyen los átomos y moléculas del mismo no se pueden mover libremente. Los electrones y protones de los átomos de un material aislante se encuentran ligados a los átomos y moléculas del medio. Los aislantes reciben también el nombre de dieléctricos.

Cargas Puntuales 

La Ley de Coulomb

La ley de Coulomb, que establece como es la fuerza entre dos cargas eléctricas puntuales, constituye el punto de partida de la Electrostática como ciencia cuantitativa. Fue descubierta por Priestley en 1766, y re-descubierta por Cavendish pocos años después, pero fue Coulomb en 1785 quien la sometió a ensayos experimentales directos.

Entendemos por carga puntual una carga eléctrica localizada en un punto geométrico del espacio. Evidentemente una carga puntual no existe, es una idealización, pero constituye una buena aproximación cuando estamos estudiando la interacción entre cuerpos cargados eléctricamente cuyas dimensiones son muy pequeñas en comparación con la distancia que existe entre ellos.

Ley de Coulomb: La fuerza electrostática entre dos cargas puntuales es proporcional al producto de las cargas e inversamente 'proporcional al cuadrado de la distancia que las separa, y tiene la dirección de la linea que las une. La fuerza es de repulsión si las cargas son de igual signo,y de atracción si son de signo contrario.

 Matemáticamente, la ley de Coulomb se puede expresar:



Donde es la fuerza que la carga q1 ejerce sobre la carga q2, k es una constante mayor que cero, r la distancia entre las cargas y ur un vector unitario dirigido de la carga qi a la carga q2 [Nota: es también común designar al vector unitario ur como r].


Es importante hacer notar en relación a la ley de Coulomb los siguientes puntos:
  • Cuando hablamos de la fuerza entre cargas eléctricas estamos siempre suponiendo que estas se encuentran en reposo (de ahí la denominación de Electrostática);
  • Las fuerzas electrostáticas cumplen la tercera ley de Newton (ley de acción y reacción), es decir, las fuerzas que dos cargas eléctricas puntuales ejercen entre si son iguales en modulo y dirección, pero de sentido contrario: Fq1^q2 = — Fq2^q1;
  • La ley de Coulomb es una ley experimental. En sus experimentos, Coulomb pudo demostrar que la ley del inverso del cuadrado de la distancia para la fuerza entre cargas eléctricas en reposo era exacta con solo un pequeño porcentaje de error. Hoy en día se sabe que es cierta con gran exactitud: el exponente de la distancia en el denominador de la ley de Coulomb puede diferir de 2 en no mas de 10-15, es decir, 2 ± 10-15;
  • Hasta donde sabemos la ley de Coulomb es valida desde distancias de muchos kilómetros hasta distancias tan pequeñas como las existentes entre protones y electrones en un átomo. Es mas, se sabe que la ley de Coulomb es valida para la repulsión electrostática entre núcleos hasta distancias de ~ 10-14 m; a distancias mas cortas dominan las fuerzas nucleares (la interacción fuerte).


SISTEMA DE UNIDADES
El valor de la constante k que aparece en la ley de Coulomb depende de las unidades elegidas para la carga, la fuerza y la distancia entre cargas. En Electrostática  como sistema de unidades, usaremos, mientras no se diga lo contrario, el sistema MKS.

Sistema MKS: denominado asi porque emplea como unidades de fuerza y longitud las unidades del sistema MKS. También es conocido como sistema Giorgi o sistema MKS racionalizado. Sus características principales son:
  • Unidad de fuerza: Newton
  • Unidad de longitud: metro
  • Unidad de carga: Culombio (C)
  •  donde la constante £0 es la permitividad del espacio libre o del vació, £0 = 8,8542 x 10-12 C2/(N m2). De este modo, la ley de Coulomb se escribe en este sistema de unidades:


El nombre de sistema racionalizado se debe a la presencia en la ley de Coulomb del factor 4π; si no se usara el factor 4π, el sistema daría lugar en los desarrollos posteriores de la electrostática a ciertas expresiones matemáticas poco atractivas en las que aparece el factor π.
INTERACCIONES ELÉCTRICAS Y GRAVITATORIAS
La ley de Coulomb para las interacciones eléctricas es muy semejante en forma a la ley de la gravitación universal para las interacciones gravitatorias:

  • En ambos casos la fuerza entre dos cuerpos es inversamente al cuadrado de la distancia que los separa;
  • La fuerza es proporcional al producto de las cargas en el caso de las fuerzas eléctricas  y proporcional al producto de las masas en el caso de las fuerzas gravitatorias.
Sin embargo, existen algunas diferencias importantes entre ambas:

  • Mientras todas las masas se atraen, las cargas eléctricas son de dos tipos (positivas y negativas), y las fuerzas entre ellas pueden ser de atracción (si las cargas son de signo contrario) o de repulsión (si las cargas son del mismo signo);
  • Las interacciones eléctricas son mucho mas intensas que las interacciones gravitatorias: las fuerzas eléctricas suelen ser 1036 — 1040 veces mayores que las fuerzas gravitatorias. De hecho, las interacciones eléctricas son las responsables de las interacciones en átomos y moléculas, mientras que la interacción gravitatoria resulta ser demasiado débil para justificar estas estructuras: la interacción eléctrica es del orden de magnitud requerido para producir el enlace entre átomos para formar moléculas, o el enlace entre electrones y protones para formar átomos.
SISTEMAS DE CARGAS PUNTUALES. PRINCIPIO DE SUPERPOSICIÓN
Supongamos que tenemos un sistema de N cargas puntuales distribuidas en posiciones fijas del espacio. A cada una de estas cargas se le designa por qi , donde i = 1,...,N. Se quiere determinar la fuerza Fq que este sistema de cargas puntuales ejerce sobre una cierta carga puntual q. Para ello aplicamos el principio de superposición.

Principio de Superposición: la fuerza total que un sistema de cargas puntuales ejerce sobre una cierta carga q es igual a la suma de las fuerzas que cada una de las cargas qi del sistema ejerce sobre la carga q. Ademas, la fuerza individual que cada carga qi ejerce sobre la carga q es la misma que si las demás cargas del sistema no existieran:

donde Fqi^q es la fuerza que la carga qi ejerce sobre la carga q, ri la distancia de la carga qi a la carga q, y uri el vector unitario dirigido de qi a q [Nota: es también común designar al vector unitario uri como ȓi].


Distribuciones Continuas de Carga

Decimos que se tiene una distribución continua de carga cuando la carga se distribuye de forma continua en una cierta región extensa del espacio (un volumen, una superficie o una curva).

DISTRIBUCIONES DE CARGA DE VOLUMEN
En este caso, la carga se distribuye en un cierto volumen V. La distribucion de carga se puede describir mediante la densidad de carga de volumen p en cada punto r de V, definida como la carga por unidad de volumen en un pequeño elemento de volumen Δv en el punto r considerado:

donde Δq es la carga correspondiente al elemento de volumen Δv situado en dicho punto.

Las unidades de p en el Sistema Internacional son C/m3
Una distribución de carga de volumen se puede considerar como un sistema de cargas puntuales: en cada punto r se tendrá una pequeña carga Δq = p(r) Δv, correspondiente a un pequeño elemento de volumen Δv situado en ese punto.

 Decimos que la distribucion de carga es uniforme si la densidad de carga es la misma en todo punto de V. En este caso, la densidad de carga p sera simplemente igual a la carga total Q de la distribucion dividida por su volumen V.




DISTRIBUCIONES SUPERFICIALES DE CARGA
La carga se distribuye en una cierta superficie S. La distribucion de carga se puede describir mediante la densidad superficial de carga σ en cada punto r de S, definida como la carga por unidad de superficie en un pequeño elemento de área Δa en el punto r considerado:

                                        

donde Δq es la carga correspondiente al elemento de área Δa situado en dicho punto.
Las unidades de σ en el Sistema Internacional son C/m2.
Una distribucion superficial de carga se puede considerar como un sistema de cargas puntuales: en cada punto r se tendrá una pequeña carga Δq = σ(r) Δa, correspondiente a un pequeño elemento de área Δa situado en ese punto.
Decimos que la distribucion de carga es uniforme si la densidad de carga σ es la misma en todo punto de S. En este caso, la densidad de carga σ sera simplemente igual a la carga total Q de la distribucion dividida por su superficie S.

DISTRIBUCIONES LINEALES DE CARGA
La carga se distribuye por una cierta curva C. La distribucion de carga se puede describir mediante la densidad lineal de carga ג en cada punto r de C, definida como la carga por unidad de longitud en un pequeño elemento de longitud Δl  en el punto r considerado:



donde Δq es la carga correspondiente al elemento de longitud Al situado en dicho punto.
  Las unidades de ג en el Sistema Internacional son C/m.
Una distribucion lineal de carga se puede considerar como un sistema de cargas puntuales: en cada punto r se tendrá una pequeña carga Δq = Δ(r) Δl, correspondiente a un pequeño elemento de longitud Δl situado en ese punto.
Decimos que la distribucion de carga es uniforme si la densidad de carga ג es la misma en todo punto de C. En este caso, la densidad de carga ג sera simplemente igual a la carga total Q de la distribucion dividida por su longitud L.